skip to main content


Search for: All records

Creators/Authors contains: "Bartomeus, Ignasi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Aim

    Most of the world's food crops are dependent on pollinators. However, there is a great deal of uncertainty in the strength of this relationship, especially regarding the relative contributions of the honey bee (often a managed species) and wild insects to crop yields on a global scale. Previous data syntheses have likewise reached differing conclusions on whether pollinator species diversity, or only the number of pollinator visits to flowers, is important to crop yield. This study quantifies the current state of these relationships and links to a dynamic version of our analyses that updates automatically as studies become available.

    Location

    Global.

    Time Period

    Present.

    Taxa studied

    Insect pollinators of global crops.

    Methods

    Using a newly created database of 93 crop pollination studies across six continents that roughly triples the number of studies previously available, we analysed the relationship between insect visit rates, pollinator diversity, and crop yields in a series of mixed‐effects models.

    Results

    We found that honey bees and wild insects contribute roughly equal amounts to crop yields worldwide, having similar average flower visitation rates and producing similar increases in yield per visit. We also found that pollinator species diversity was positively associated with increased crop yields even when total visits from all species are accounted for, though it was less explanatory than the total number of visits itself.

    Main conclusions

    Our analysis suggests a middle ground where honey bees are not responsible for the vast majority of crop pollination as has often been assumed in the agricultural literature, and likewise wild insects are not vastly more important than honey bees, as recent global analyses have reported. We also conclude that while pollinator diversity is less important than the number of pollinator visits, these typically involve many species, underscoring the importance of conserving a diversity of wild pollinators.

     
    more » « less
  2. Pollination plays a central role in both crop production and maintaining biodiversity. However, habitat loss, pesticides, invasive species and larger environmental fluctuations are contributing to a dramatic decline of pollinators worldwide. Different management solutions require knowledge of how ecological communities will respond following interventions. Yet, anticipating the response of these systems to interventions remains extremely challenging due to the unpredictable nature of ecological communities, whose nonlinear behaviour depends on the specific details of species interactions and the various unknown or unmeasured confounding factors. Here, we propose that this knowledge can be derived by following a probabilistic systems analysis rooted on non-parametric causal inference. The main outcome of this analysis is to estimate the extent to which a hypothesized cause can increase or decrease the probability that a given effect happens without making assumptions about the form of the cause–effect relationship. We discuss a road map for how this analysis can be accomplished with the aim of increasing our system-level causative knowledge of natural communities. This article is part of the theme issue ‘Natural processes influencing pollinator health: from chemistry to landscapes’. 
    more » « less
  3. Ecological theory predicts that species interactions embedded in multitrophic networks shape the opportunities for species to persist. However, the lack of experimental support of this prediction has limited our understanding of how species interactions occurring within and across trophic levels simultaneously regulate the maintenance of biodiversity. Here, we integrate a mathematical approach and detailed experiments in plant–pollinator communities to demonstrate the need to jointly account for species interactions within and across trophic levels when estimating the ability of species to persist. Within the plant trophic level, we show that the persistence probability of plant species increases when introducing the effects of plant–pollinator interactions. Across trophic levels, we show that the persistence probabilities of both plants and pollinators exhibit idiosyncratic changes when experimentally manipulating the multitrophic structure. Importantly, these idiosyncratic effects are not recovered by traditional simulations. Our work provides tractable experimental and theoretical platforms upon which it is possible to investigate the multitrophic factors affecting species persistence in ecological communities.

     
    more » « less
  4. Despite their miniature brains, insects exhibit substantial variation in brain size. Although the functional significance of this variation is increasingly recognized, research on whether differences in insect brain sizes are mainly the result of constraints or selective pressures has hardly been performed. Here, we address this gap by combining prospective and retrospective phylogenetic-based analyses of brain size for a major insect group, bees (superfamily Apoidea). Using a brain dataset of 93 species from North America and Europe, we found that body size was the single best predictor of brain size in bees. However, the analyses also revealed that substantial variation in brain size remained even when adjusting for body size. We consequently asked whether such variation in relative brain size might be explained by adaptive hypotheses. We found that ecologically specialized species with single generations have larger brains—relative to their body size—than generalist or multi-generation species, but we did not find an effect of sociality on relative brain size. Phylogenetic reconstruction further supported the existence of different adaptive optima for relative brain size in lineages differing in feeding specialization and reproductive strategy. Our findings shed new light on the evolution of the insect brain, highlighting the importance of ecological pressures over social factors and suggesting that these pressures are different from those previously found to influence brain evolution in other taxa. 
    more » « less
  5. Human land use threatens global biodiversity and compromises multiple ecosystem functions critical to food production. Whether crop yield–related ecosystem services can be maintained by a few dominant species or rely on high richness remains unclear. Using a global database from 89 studies (with 1475 locations), we partition the relative importance of species richness, abundance, and dominance for pollination; biological pest control; and final yields in the context of ongoing land-use change. Pollinator and enemy richness directly supported ecosystem services in addition to and independent of abundance and dominance. Up to 50% of the negative effects of landscape simplification on ecosystem services was due to richness losses of service-providing organisms, with negative consequences for crop yields. Maintaining the biodiversity of ecosystem service providers is therefore vital to sustain the flow of key agroecosystem benefits to society. 
    more » « less